Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.007
Filtrar
1.
Vet Q ; 44(1): 1-13, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38465827

RESUMO

Marek's disease virus (MDV) has become an increasingly virulent pathogen in the poultry industry despite vaccination efforts to control it. Brazil has experienced a significant rise of Marek's disease (MD) outbreaks in recent years. Our study aimed to analyze the complete meq gene sequences to understand the molecular epidemiological basis of MD outbreaks in Brazilian vaccinated layer farms. We detected a high incidence rate of visceral MD (67.74%) and multiple circulating MDV strains. The most prevalent and geographically widespread genotype presented several clinical and molecular characteristics of a highly virulent strain and evolving under positive selective pressure. Phylogenetic and phylogeographic analysis revealed a closer relationship with strains from the USA and Japan. This study sheds light on the circulation of MDV strains capable of infecting vaccinated birds. We emphasize the urgency of adopting preventive measures to manage MDV outbreaks threatening the poultry farming industry.


Assuntos
Mardivirus , Doença de Marek , Doenças das Aves Domésticas , Animais , Aves Domésticas , Galinhas/genética , Brasil/epidemiologia , Filogenia , Mardivirus/genética , Doença de Marek/epidemiologia , Doença de Marek/prevenção & controle , Doença de Marek/genética , Fazendas , Oncogenes , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle
2.
Virus Genes ; 60(1): 32-43, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184501

RESUMO

Fifty-seven Gallid alphaherpesvirus 2 (GaHV-2) isolates, collected during a 30-year period (1990-2019) from commercial poultry flocks affected by Marek's disease (MD), were molecularly characterised. The GaHV-2 meq gene was amplified and sequenced to evaluate the virus virulence, based on the number of PPPPs within the proline-rich repeats (PRRs) of its transactivation domain. The present illustration of virus virulence evaluation on a large scale of field virus isolates by molecular analysis exemplifies the practical benefit and usefulness of the molecular marker in commercial GaVH-2 isolates. The alternative assay of GaVH-2 virulence pathotyping is the classical Gold Standard ADOL method, which is difficult and impossible to employ on a large scale using the Specific Pathogen Free (SPF) chicks of the ADOL strains kept in isolators for two months. The phylogenetic analysis performed in the present study showed that the meq gene amino acid sequences of the 57 Israeli strains divide into 16 phylogenetic branches. The virulence evaluation was performed in comparison with 36 GaHV-2 prototype strains, previously characterised by the in vivo Gold Standard ADOL assay. The results obtained revealed that the GaHV-2 strains circulating in Israel have evolved into a higher virulence potential during the years, as the four-proline stretches number in the meq gene decreased over the investigated period, typically of very virulent virus prototypes. The present study supports the meq gene molecular markers for the assessment of field GaVH-2 strains virulence.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Oncogênicas Virais , Doenças das Aves Domésticas , Animais , Aves Domésticas , Israel , Virulência/genética , Filogenia , Proteínas Oncogênicas Virais/genética , Herpesvirus Galináceo 2/genética , Galinhas , Prolina/genética
3.
BMC Vet Res ; 20(1): 10, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183097

RESUMO

Marek's disease virus (MDV) strain GX0101 was the first reported field strain of recombinant gallid herpesvirus type 2 (GaHV-2). However, the splenic proteome of MDV-infected chickens remains unclear. In this study, a total of 28 1-day-old SPF chickens were intraperitoneally injected with chicken embryo fibroblast (CEF) containing 2000 PFU GX0101. Additionally, a control group, consisting of four one-day-old SPF chickens, received intraperitoneal equal doses of CEF. Blood and various tissue samples were collected at different intervals (7, 14, 21, 30, 45, 60, and 90 days post-infection; dpi) for histopathological, real-time PCR, and label-free quantitative analyses. The results showed that the serum expressions of MDV-related genes, meq and gB, peaked at 45 dpi. The heart, liver, and spleen were dissected at 30 and 45 dpi, and their hematoxylin-eosin staining indicated that virus infection compromised the normal organizational structure at 45 dpi. Particularly, the spleen structure was severely damaged, and the lymphocytes in the white medulla were significantly reduced. Furthermore, liquid chromatography-mass spectrometry (LC-MS) and label-free techniques were used to analyze the difference in splenic proteome profiles of the experimental and control groups at 30 and 45 dpi. Proteomic analysis identified 1660 and 1244 differentially expressed proteins (DEPs) at 30 and 40 dpi, respectively, compared with the uninfected spleen tissues. According to GO analysis, these DEPs were involved in processes such as organelle organization, cellular component biogenesis, cellular component assembly, anion binding, small molecule binding, metal ion binding, cation binding, cytosol, nuclear part, etc. Additionally, KEGG analysis indicated that the following pathways were linked to MDV-induced inflammation, apoptosis, and tumor: Wnt, Hippo, AMPK, cAMP, Notch, TGF-ß, PI3K-Akt, Rap1, Ras, Calcium, NF-κB, PPAR, cGMP-PKG, Apoptosis, VEGF, mTOR, FoxO, TNF, JAK-STAT, MAPK, Prion disease, T cell receptor, and B cell receptor. We finally screened 674 DEPs that were linked to MDV infection in spleen tissue. This study improves our understanding of the MDV response mechanism in the spleen.


Assuntos
Doença de Marek , Baço , Animais , Embrião de Galinha , Proteoma , Fosfatidilinositol 3-Quinases , Proteômica , Galinhas
4.
Poult Sci ; 103(1): 103199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37939590

RESUMO

The combined effects of the in ovo injection of commercial Marek's disease vaccine (MDV) and various levels of 25-hydroxyvitamin D3 (25OHD3) on the hatch variables, immunological measurements, and gene expression of Ross 708 hatchling broilers were investigated. A total of 5 in ovo injection treatments that were applied at 18 d of incubation (doi) included: 1) noninjected (control); or a 50 µL solution volume of 2) MDV alone; or MDV combined with 3) 0.6 µg of 25OHD3; 4) 1.2 µg of 25OHD3; or 5) 2.4 µg of 25OHD3. At hatch, hatchability of set and live embryonated eggs, hatchling body weight, hatch residue analysis, serum IgY and alpha-1 acid glycoprotein (AGP) concentrations, and the expression of genes related to immunity (INFα, INFß, INFγ, TLR-3, and TLR-21) and vitamin D3 activity (1 α-hydroxylase, 24 hydroxylase, and vitamin D receptor) were determined. No significant treatment differences were observed for hatchability of set and live embryonated eggs, or for serum IgY and AGP concentrations. However, hatchling body weight was higher when MDV was combined with either 1.2 or 2.4 µg of 25OHD3 than when MDV was provided alone or in combination with 0.6 µg of 25OHD3. Also, in comparison to the noninjected treatment group, the expression of the genes for 1 α-hydroxylase and 24 hydroxylase was improved when MDV was combined with either 1.2 or 2.4 µg of 25OHD3. Lastly, expression of the genes linked to viral detection (TLR-3) and antibody production (INF-ß) was increased in those treatments that contained any level of 25OHD3. These results indicate that in comparison to controls, the effects of MDV were observed to be greater on hatchling BW and splenic gene expression when it was administered in combination with the 1.2 or 2.4 µg doses of 25OHD3. Further research is needed to determine the posthatch effects of the administration of various levels of 25OHD3 in combination with MDV.


Assuntos
Vacinas contra Doença de Marek , Doença de Marek , Animais , Galinhas , Calcifediol/farmacologia , Receptor 3 Toll-Like , Óvulo , Peso Corporal , Oxigenases de Função Mista , Doença de Marek/prevenção & controle
5.
Poult Sci ; 103(2): 103292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100950

RESUMO

The cluster homolog of immunoglobulin-like receptors (CHIRs), previously known as the "chicken homolog of immunogloublin-like receptors," represents is a large group of transmembrane glycoproteins that direct the immune response. However, the full repertoire of putatively activating, inhibitory, or dual function CHIRA, CHIRB, and CHIRAB on chickens' immune responses is poorly understood. Herein, the study objective was to determine the genes encoding CHIR proteins and predict their function by searching canonical protein structure. A bioinformatics pipeline based on previous work was employed to search for the CHIRs from the newly updated broiler and layer genomes. The categorization into CHIRA, CHIRB, and CHIRAB types was assigned through motif searches, multiple sequence alignment, and phylogeny. In total, 150 protein-encoding genes on Chromosome 31 were identified as CHIRs. Gene members of each functional group (CHIRA, CHIRB, CHIRAB) were classified in accordance with previously recognized proteins. The genes were renamed to "cluster homolog of immunoglobulin-like receptors" (CHIRs) to allow for the naming of orthologous genes in other avian species. Additionally, expression analysis of the classified CHIRs across various reinforces their importance as immune regulators and activation in inflammatory tissues. Furthermore, over 1,000 diverse and rare CHIRs variants associated with differential Marek's disease response (P < 0.05) emphasize the impact of CHIRs on shaping avian immune responses in diverse contexts. The practical applications of these findings encompass advancing immunology, improving poultry health management, optimizing breeding programs for disease resistance, and enhancing overall animal health through a deeper understanding of the roles and functions of CHIRA, CHIRB, and CHIRAB types in avian immune responses.


Assuntos
Galinhas , Doença de Marek , Animais , Galinhas/genética , Genoma , Filogenia , Imunoglobulinas/genética
6.
Virology ; 590: 109970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134535

RESUMO

Marek's disease is a contagious proliferative disease of chickens caused by an alphaherpesvirus called Marek's disease virus. A bivalent mRNA vaccine encoding MDV's glycoprotein-B and phosphoprotein-38 antigens was synthesized and encapsulated in lipid nanoparticles. Tumor incidence, lesion score, organ weight indices, MDV genome load and cytokine expression were used to evaluate protection and immunostimulatory effects of the tested mRNA vaccine after two challenge trials. Results from the first trial showed decreased tumor incidence and a reduction in average lesion scores in chickens that received the booster dose. The second trial demonstrated that vaccination with the higher dose of the vaccine (10 µg) significantly decreased tumor incidence, average lesion scores, bursal atrophy, and MDV load in feather tips when compared to the controls. Changes in expression of type I and II interferons suggested a possible role for these cytokines in initiation and maintenance of the vaccine-originated immune responses.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Neoplasias , Animais , Galinhas , Vacinas de mRNA , Herpesvirus Galináceo 2/genética
7.
Science ; 382(6676): 1245-1246, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096277
8.
Science ; 382(6676): 1276-1281, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096384

RESUMO

The pronounced growth in livestock populations since the 1950s has altered the epidemiological and evolutionary trajectory of their associated pathogens. For example, Marek's disease virus (MDV), which causes lymphoid tumors in chickens, has experienced a marked increase in virulence over the past century. Today, MDV infections kill >90% of unvaccinated birds, and controlling it costs more than US$1 billion annually. By sequencing MDV genomes derived from archeological chickens, we demonstrate that it has been circulating for at least 1000 years. We functionally tested the Meq oncogene, one of 49 viral genes positively selected in modern strains, demonstrating that ancient MDV was likely incapable of driving tumor formation. Our results demonstrate the power of ancient DNA approaches to trace the molecular basis of virulence in economically relevant pathogens.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas/virologia , Herpesvirus Galináceo 2/classificação , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Linfoma/virologia , Doença de Marek/história , Doença de Marek/virologia , Virulência/genética , Filogenia
9.
Viruses ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005939

RESUMO

Marek's disease (MD) is a highly infectious lymphoproliferative disease in chickens with a significant economic impact. Mardivirus gallidalpha 2, also known as Marek's disease virus (MDV), is the causative pathogen and has been categorized based on its virulence rank into four pathotypes: mild (m), virulent (v), very virulent (vv), and very virulent plus (vv+). A prior comparative genomics study suggested that several single-nucleotide polymorphisms (SNPs) and genes in the MDV genome are associated with virulence, including nonsynonymous (ns) SNPs in eight open reading frames (ORF): UL22, UL36, UL37, UL41, UL43, R-LORF8, R-LORF7, and ICP4. To validate the contribution of these nsSNPs to virulence, the vv+MDV strain 686 genome was modified by replacing nucleotides with those observed in the vMDV strains. Pathogenicity studies indicated that these substitutions reduced the MD incidence and increased the survival of challenged birds. Furthermore, using the best-fit pathotyping method to rank the virulence, the modified vv+MDV 686 viruses resulted in a pathotype similar to the vvMDV Md5 strain. Thus, these results support our hypothesis that SNPs in one or more of these ORFs are associated with virulence but, as a group, are not sufficient to result in a vMDV pathotype, suggesting that there are additional variants in the MDV genome associated with virulence, which is not surprising given this complex phenotype and our previous finding of additional variants and SNPs associated with virulence.


Assuntos
Herpesvirus Galináceo 2 , Mardivirus , Doença de Marek , Animais , Virulência/genética , Galinhas , Herpesvirus Galináceo 2/genética , Mardivirus/genética
10.
J Virol ; 97(12): e0157423, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38014947

RESUMO

IMPORTANCE: Marek's disease virus (MDV) is a highly infectious and oncogenic virus that can induce severe T cell lymphomas in chickens. MDV encodes more than 100 genes, most of which have unknown functions. This work indicated that the LORF9 gene is necessary for MDV early cytolytic replication in B lymphocytes. In addition, we have found that the LORF9 deletion mutant has a comparative immunological protective effect with CVI988/Rispens vaccine strain against very virulent MDV challenge. This is a significant discovery that LORF9 can be exploited as a possible target for the development of an MDV gene deletion vaccine.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Doenças das Aves Domésticas , Animais , Linfócitos B , Galinhas , Deleção de Genes , Herpesvirus Galináceo 2/genética , Doença de Marek/prevenção & controle , Doença de Marek/genética , Vacinas contra Doença de Marek/genética , Replicação Viral
11.
Res Vet Sci ; 164: 105047, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37837750

RESUMO

Marek's disease (MD) is a severe infectious and immunosuppressive neoplastic condition that significantly impacts the global poultry industry. Investigating the role of non-coding RNA in pathogenic mechanisms of MD virus (MDV) offers valuable insights for the effective prevention and management of MD. A higher expression of the novel lncRNA-9802 can be found in spleen tissues of MDV-infected chickens from our prior research, and there is a potential association between lncRNA-9802 and cell proliferation. In this study, we further demonstrated that over-expression of lncRNA-9802 could promote the proliferation of DF-1 cells. It has been established that lncRNA-9802 mediated its effects by binding to miR-1646, and further modulated the expression of the Bax and Bcl-2 genes. Deciphering the role of the recently discovered MD-associated lncRNA-9802/miR-1646 axis provides valuable theoretical basis for decoding the molecular mechanisms underlying MDV pathogenesis.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , MicroRNAs , RNA Longo não Codificante , Animais , Proteína X Associada a bcl-2 , Proliferação de Células , Galinhas , Herpesvirus Galináceo 2/genética , Doença de Marek/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Transdução de Sinais
12.
Virus Genes ; 59(6): 845-851, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851282

RESUMO

The virus that causes Marek's disease (MD) is globally ubiquitous in chickens, continuously evolving, and poses a significant threat to the poultry industry. Although vaccines are extensively used, MD still occurs frequently and the virus has evolved increased virulence in China. Here, we report an outbreak of MD in vaccinated chickens and unvaccinated turkeys in a backyard farm in Guangdong province, China, in 2018. Phylogenetic analysis revealed two lineages of MDVs at this farm, with one lineage, containing isolates from two turkeys and five chickens, clustering with virulent Chinese strains and displays a relatively high genetic divergence from the vaccine strains. These new isolates appear to have broken through vaccine immunity, yielding this outbreak of MD in chickens and turkeys. The second lineage included four chicken isolates that clustered with the CVI988 and 814 vaccine strains. The large diversity of MDVs in this single outbreak reveals a complex circulation of MDVs in China. Poor breeding conditions and the weak application of disease prevention and control measures make backyard farms a hotbed for the evolution of viruses that cause infectious diseases. This is especially important in MDV as the MD vaccines do not provide sterilizing immunity, which allows the replication and shedding of virulent field viruses by vaccinated individuals and supporting the continuous evolution of MDVs. Hence, constant monitoring of the evolution of MDVs is necessary to understand the evolution of these field viruses and potential expansions of their host range.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Doenças das Aves Domésticas , Vacinas , Humanos , Animais , Galinhas , Filogenia , Perus , Herpesvirus Galináceo 2/genética , Evolução Molecular
13.
Poult Sci ; 102(12): 103036, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832188

RESUMO

Marek's disease virus (MDV), a naturally oncogenic, highly contagious alpha herpesvirus, induces a T cell lymphoma in chickens that causes severe economic loss. Marek's disease (MD) outcome in an individual is attributed to genetic and environmental factors. Further investigation of the host-virus interaction mechanisms that impact MD resistance is needed to achieve greater MD control. This study analyzed genome-wide DNA methylation patterns in 2 highly inbred parental lines 63 and 72 and 5 recombinant congenic strains (RCS) C, L, M, N, and X strains from those parents. Lines 63 and 72, are MD resistant and susceptible, respectively, whereas the RCS have different combinations of 87.5% Line 63 and 12.5% Line 72. Our DNA methylation cluster showed a strong association with MD incidence. Differentially methylated regions (DMRs) between the parental lines and the 5 RCS were captured. MD-resistant and MD-susceptible markers of DNA methylation were identified as transgenerational epigenetic inheritable. In addition, the growth of v-src DNA tumors and antibody response against sheep red blood cells differed among the 2 parental lines and the RCS. Overall, our results provide very solid evidence that DNA methylation patterns are transgenerational epigenetic inheritance (TEI) in chickens and also play a vital role in MD tumorigenesis and other immune responses; the specific methylated regions may be important modulators of general immunity.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Doenças dos Ovinos , Animais , Ovinos , Galinhas , Resistência à Doença/genética , Suscetibilidade a Doenças/veterinária , Epigênese Genética , Doenças dos Ovinos/genética
14.
J Virol ; 97(10): e0071623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737586

RESUMO

IMPORTANCE: Marek's disease virus (MDV) is a ubiquitous chicken pathogen that inflicts a large economic burden on the poultry industry, despite worldwide vaccination programs. MDV is only partially controlled by available vaccines, and the virus retains the ability to replicate and spread between vaccinated birds. Following an initial infection, MDV enters a latent state and integrates into host telomeres and this may be a prerequisite for malignant transformation, which is usually fatal. To understand the mechanism that underlies the dynamic relationship between integrated-latent and reactivated MDV, we have characterized integrated MDV (iMDV) genomes and their associated telomeres. This revealed a single orientation among iMDV genomes and the loss of some terminal sequences that is consistent with integration by homology-directed recombination and excision via a telomere-loop-mediated process.


Assuntos
Galinhas , Genoma Viral , Herpesvirus Galináceo 2 , Recombinação Homóloga , Doença de Marek , Telômero , Integração Viral , Animais , Galinhas/virologia , Genoma Viral/genética , Herpesvirus Galináceo 2/genética , Doença de Marek/genética , Doença de Marek/virologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/virologia , Telômero/genética , Vacinas Virais/imunologia , Ativação Viral , Latência Viral , Integração Viral/genética
15.
Avian Pathol ; 52(6): 401-411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605844

RESUMO

Marek's disease (MD) is caused by oncogenic MD virus serotype 1 (MDV1) and is characterized by lymphoproliferative lesions resulting in high morbidity and mortality in chickens. Despite being ubiquitous on poultry farms, there is a dearth of information on its molecular characteristics in Nigeria. This study aimed at characterizing three virulence genes (Meq, pp38, and vIL-8) of MDV1 from chickens in Ogun state, Nigeria. Blood, feather quill, and tumour samples of chickens from different commercial poultry farms in Ogun State were pooled, spotted on 107 FTA cards, and screened for MDV1 by polymerase chain reaction (PCR). Phylogenetic analysis was carried out to compare Nigerian MDV1 Meq, pp38, and vIL-8 genes sequences with the published references. Thirteen samples were MDV1-positive and the Meq, as well as pp38, and vIL-8 genes from the different samples were 100% identical. The Meq genes contained 339 amino acids (aa) with three PPPP motifs in the transactivation domain and two interruptions of the PPPP motifs due to proline-to-arginine substitutions at positions 176 and 217 resulting in a 20.88% proline composition. Phylogenetic analysis revealed that the Meq gene clustered with strains from Egypt and very virulent ATE2539 strain from Hungary. Mutations were observed in the pp38 protein (at positions 107 and 109) and vIL-8 protein (at positions 4 and 31). Based on the molecular analysis of the three genes, the results indicate the presence of MDV1 with virulence signatures; therefore, further studies on in vivo pathotyping of Nigerian MDV1 from all states should be performed.RESEARCH HIGHLIGHTS Meq, pp38 and vIL-8 genes were 100% identical between Nigerian MDV strains.Proline content in Nigerian meq gene was 20.88% with two PPPP motifs interruptions.Meq, pp38 and vIL-8 genes of Nigerian MDV were similar to Egyptian and Indian strains.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Oncogênicas Virais , Doenças das Aves Domésticas , Animais , Galinhas , Filogenia , Nigéria/epidemiologia , Herpesvirus Galináceo 2/genética , Aves Domésticas , Prolina/genética , Doenças das Aves Domésticas/epidemiologia
16.
Viruses ; 15(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37631976

RESUMO

The host response to pathogenic microbes can lead to expression of interleukin (IL)-17, which has antimicrobial and anti-viral activity. However, relatively little is known about the basic biological role of chicken IL-17A against avian viruses, particularly against Marek's disease virus (MDV). We demonstrate that, following MDV infection, upregulation of IL-17A mRNA and an increase in the frequency of IL-17A+ T cells in the spleen occur compared to control chickens. To elaborate on the role of chIL-17A in MD, the full-length chIL-17A coding sequence was cloned into a pCDNA3.1-V5/HIS TOPO plasmid. The effect of treatment with pcDNA:chIL-17A plasmid in combination with a vaccine (HVT) and very virulent(vv)MDV challenge or vvMDV infection was assessed. In combination with HVT vaccination, chickens that were inoculated with the pcDNA:chIL-17A plasmid had reduced tumor incidence compared to chickens that received the empty vector control or that were vaccinated only (66.6% in the HVT + empty vector group and 73.33% in HVT group versus 53.3% in the HVT + pcDNA:chIL-17A). Further analysis demonstrated that the chickens that received the HVT vaccine and/or plasmid expressing IL-17A had lower MDV-Meq transcripts in the spleen. In conclusion, chIL-17A can influence the immunity conferred by HVT vaccination against MDV infection in chickens.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Vacinas , Animais , Galinhas , Interleucina-17/genética , Doença de Marek/prevenção & controle , Fatores Imunológicos , Herpesvirus Galináceo 2/genética
17.
Viruses ; 15(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37631994

RESUMO

Marek's disease virus (MDV) causes a deadly lymphoproliferative disease in chickens, resulting in huge economic losses in the poultry industry. It has been suggested that MDV suppresses the induction of type I interferons and thus escapes immune control. Cholesterol 25-hydroxylase (CH25H), a gene that encodes an enzyme that catalyses cholesterol to 25-hydroxycholesterol (25-HC), is an interferon-stimulating gene (ISG) known to exert antiviral activities. Other oxysterols, such as 27-hydroxycholesterols (27-HC), have also been shown to exert antiviral activities, and 27-HC is synthesised by the catalysis of cholesterol via the cytochrome P450 enzyme oxidase sterol 27-hydroxylase A1 (CYP27A1). At 24 h post infection (hpi), MDV stimulated a type I interferon (IFN-α) response, which was significantly reduced at 48 and 72 hpi, as detected using the luciferase assay for chicken type I IFNs. Then, using RT-PCR, we demonstrated that chicken type I IFN (IFN-α) upregulates chicken CH25H and CYP27A1 genes in chicken embryo fibroblast (CEF) cells. In parallel, our results demonstrate a moderate and transient upregulation of CH25H at 48 hpi and CYP27A1 at 72hpi in MDV-infected CEF cells. A significant reduction in MDV titer and plaque sizes was observed in CEFs treated with 25-HC or 27-HC in vitro, as demonstrated using a standard plaque assay for MDV. Taken together, our results suggest that 25-HC and 27-HC may be useful antiviral agents to control MDV replication and spread.


Assuntos
Interferon Tipo I , Doença de Marek , Animais , Embrião de Galinha , Hidroxicolesteróis/farmacologia , Galinhas , Interferon-alfa/farmacologia , Antivirais/farmacologia , Replicação Viral
18.
Vaccine ; 41(40): 5884-5891, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598026

RESUMO

Marek's disease (MD) is a highly contagious viral neoplastic disease of chickens caused by Marek's disease virus (MDV), resulting in significant economic losses to the poultry industry worldwide. The commonly used live and/or vectored MDV vaccines are expensive to produce and difficult to handle due to the requirement of liquid nitrogen for manufacturing and delivering frozen infected cells that are viable. In this study, we aimed to develop a Newcastle disease virus (NDV) vectored MDV vaccine that can be lyophilized, stored, and transported at 4 °C. Four NDV LaSota (LS) vaccine strain-based recombinant viruses expressing MDV glycoproteins gB, gC, gE, or gI were generated using reverse genetics technology. The biological assessments showed that these recombinant viruses were slightly attenuated in vivo yet retained similar growth kinetics and virus titers in vitro compared to the parental LaSota virus. Vaccination of leghorn chickens (Lines 15I5x71 F1 cross) with these recombinant viruses via intranasal and intraocular routes conferred different levels of protection against virulent MDV challenge. The recombinant expressing the MDV gB protein, rLS/MDV-gB, protected vaccinated birds significantly against MDV-induced tumor formation when challenged at 14 days post-vaccination (DPV) but moderately at 5 DPV. Whereas the other three recombinants provided little protection against the MDV challenge. All four recombinants conferred complete protection against the velogenic NDV challenge. These results demonstrated that the rLS/MDV-gB virus is a safe and efficacious dual vaccine candidate that can be lyophilized and potentially mass-administered via aerosol or drinking water to large chicken populations at a meager cost.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Galinhas , Vírus da Doença de Newcastle/genética , Doença de Marek/prevenção & controle , Herpesvirus Galináceo 2/genética , Comércio
19.
Viruses ; 15(7)2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37515122

RESUMO

As one of the most important avian immunosuppressive and neoplastic diseases, Marek's disease (MD), caused by oncogenic Marek's disease virus (MDV), has caused huge economic losses worldwide over the past five decades. In recent years, MD outbreaks have occurred frequently in MD-vaccinated chicken flocks, but the key pathogenic determinants and influencing factors remain unclear. Herein, we analyzed the pathogenicity of seven newly isolated MDV strains from tumor-bearing chickens in China and found that all of them were pathogenic to chicken hosts, among which four MDV isolates, SDCW01, HNXZ05, HNSQ05 and HNSQ01, were considered to be hypervirulent MDV (HV-MDV) strains. At 73 days of the virus infection experiment, the cumulative incidences of MD were 100%, 93.3%, 90% and 100%, with mortalities of 83.3%, 73.3%, 60% and 86.7%, respectively, for the four viruses. The gross occurrences of tumors were 50%, 33.3%, 30% and 63.3%, respectively, accompanied by significant hepatosplenomegaly and serious atrophy of the immune organs. Furthermore, the immune protection effects of four commercial MD vaccines against SDCW01, CVI988, HVT, CVI988+HVT, and 814 were explored. Unexpectedly, during the 67 days of post-virus challenge, the protection indices (PIs) of these four MD vaccines were only 46.2%, 38.5%, 50%, and 28%, respectively, and the birds that received the monovalent CVI988 or HVT still developed tumors with cumulative incidences of 7.7% and 11.5%, respectively. To our knowledge, this is the first demonstration of the simultaneous comparison of the immune protection efficacy of multiple commercial MD vaccines with different vaccine strains. Our study revealed that the HV-MDV variants circulating in China could significantly break through the immune protection of the classical MD vaccines currently widely used. For future work, there is an urgent need to develop novel, more effective MD vaccines for tackling the new challenge of emerging HV-MDV strains or variants for the sustainable control of MD.


Assuntos
Herpesvirus Galináceo 2 , Vacinas contra Doença de Marek , Doença de Marek , Neoplasias , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Vacinas contra Doença de Marek/genética
20.
Vet Radiol Ultrasound ; 64(4): E41-E44, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37309707

RESUMO

A 4-year-old chicken was presented with a history of anorexia, depression, and blindness. An ultrasound examination of the coelomic cavity was performed that revealed splenomegaly, hepatic nodules, and hypoechoic thickening of the intestinal wall. Ultrasonography of the coelomic cavity was done and revealed splenomegaly, nodular hepatic changes, and hypoechoic thickening of the intestinal wall. A diagnosis of Marek's disease was made based on the history and extension of the abdominal organ changes and confirmed by histopathology. This study describes an ultrasonographic appearance of Marek's disease in a chicken and emphasizes the importance and benefits of ultrasonography in staging the progression of Marek's disease.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Doença de Marek/diagnóstico por imagem , Galinhas , Esplenomegalia/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...